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Overview

We are concerned in the course with partial differential equations with one
dependent variable z and two independent variables x and y.

We discuss few methods to solve linear differential equations of n"" order
with constant coefficients in three lectures.
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Lagrange linear partial differential equations

The equation of the form
Pp+Qq=R

is known as Lagrange linear equation and P, @ and R are functions of y
and z. To solve this type of equations it is enough to solve the equation
which the subsidiary equation

dx dy dz

P Q R’

From the above subsidiary equation we can obtain two independent
solutions u(x,y,z) = ¢1 and v(x,y, z) = ¢, then the solution of the
Lagrange's equation is given by ¢(u, v) = 0.

There are two methods of solving the subsidiary equation known as
method of grouping and method of multipliers.
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Method of Grouping

Consider the subsidiary equation

dx_ﬂ_dz

P Q R’

Take any two ratios of the above equation say the first two or first and
third or second and third. Suppose we take d—,;( = %’ and if the functions P
and @ may contain the variable z, then eliminate the variable z. Then the
direct integration gives u(x,y) = c1, v(y, z) = ¢, then the solution of the
Lagrange's equation is given by ¢(u, v) = 0.
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Method of multipliers

Choose any three multipliers £, m, n which may be constants or functions
of x,y and z such that

dx dy dz {dx+ mdy+ ndz

P Q R (P+mQ+nR’

If the relation /P + mQ@ + nR = 0, then ¢dx + mdy + ndz. Now direct
integration gives us a solution

u(x,y,z) = a.

Similarly any other set of multipliers ¢/, m’, n’ gives another solution

V(vaaz) = Q.
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Examples on method of Grouping

Example 1.

Solve xp + yq = z.
Solution. The subsidiary equation is < = = %. Taking the first ratio we have & = 2£.

dx _ dy dx _ dy
X x —y
Integrating we get

log x =log y + logc
X
log — =log a1
y
X
— =q.
y

Taking the second and third ratios we have & — dz Integrating we get
y z

logy =log z+log

Yy _
log = = log &

N[N

= C2.

The required solution is ¢ <§, %) =0.

v
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Example 2.

Solve xp + yq = x.
Solution. The subsidiary equation is % = d — dz Taking the first ratio we have % = gz,
X y z X y
Integrating we get
log x=1log y+log a1
X
= = @il
y
Taking the first and third ratios we have
dx dz
x  x
dx = dz
Integrating we get
X=z4+C
X—z= 0.
The required solution is ¢ <§,X - z) —o0.
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Example 3.

Solve tan xp + tan yq = tan z.
Solution. The subsidiary equation is ti =0 = 2
an x tan y tan z
. dx __ _dy
Integrating > = - 5 we get
X i sin x sin x
logsinx = logsiny + logciy — log —— = logc; — — =
siny siny
9 dy _ _dz
Integrating @ny — tanz We get
. . sin y siny
logsiny = logsiny + logc, —> log —— = log & = — =o.
sin z sin z
The required solution is ¢ (Si" XS} ) =0,
sin y’sin z
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Example 4.

Find the complete integral of the partial differential equation (1 — x)p+ (2 —y)g =3 — z.
Solution. The subsidiary equation is

Integrating % = % we get
—log(1 —x) = —log(2 — y) +logcr = :i =a.
Inte ing & = 9=
grating 1= = 3= we get
3—2z
—log(1—x) = —log(3—z) +logc, = . = .
— X

The requird solution is ¢ (2_y 3_2) —0.

1—x?1—x
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Examples based on method of multipliers

Solve (y — z)p + (z = x)q = (x — y).
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx dy dz

Using the multipliers 1,1,1 we have

dx + dy + dz _ dx+dy+dz
y—z—i—z—x—i—x—y_ 0

Each ratio =

— x+y+z=cqc.

Using the multipliers x,y,z we have

xdx + ydy + zdz _ Xxdx + ydy + zdz

Each ratio = =
x(y =z) +y(z = x) + z(x — y) 0

= x2+y2+22:2<:2.

Hence the solution is ¢(x + y + z,x% + y? + z2) = 0.
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Example 6.

Solve x(y — z)p + y(z — x)q = z(x — y).
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx _ dy dz

x(y—2) y(z—x)  z(x-y)

Using the multipliers 1,1,1 we have

Each ratio = dx+dy+dz :dx—l—dy—i-dz = x+y+z=qc.
Xy —XzZ+yz—Xxy+xz—yz 0
Using the multipliers %, %, % we have
ldx + Lldy + ldz ldx + Ldy + ldz
Each ratio = Z == Z — Xyz = C.
y—z+z—x+x—y) 0

Hence the solution is ¢(x + y + z, xyz) = 0.
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Example 7.

Solve x(y? — z%)p + y(z? — x?)q = z(x*> — y?).
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx _ dy _ dz
x(y2 =22 y(22-x2)  z(x2—y?)

Using the multipliers x,y,z we have

Each ratio xdx + ydy + zdz xdx + ydy + ydz
io = =
P V) W P ) e Py 0

- x2+y2+22:c1.

Choosing the multipliers X, 1, 1 we have
x’y’z
%dx-l—ldy-i-%dz %dx-}-ldy—f—%dz
Each ratio = z = z = Xyz = .
02—+ (@ D) + () 0

The required solution is ¢(x? + y? 4 22, xyz) = 0.
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Example 8.

Solve x*(y — z) + y*(z — x)g = Z%(x — y).
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx _ dy . dz
X(y—z) yAz—x) 2(x—y)

Using the multipliers %, %, % we have
idx—l—%dy—f—%dz %dx-i—%dy-‘r%dz
Each ratio = = —> Xyz =cj.
x(y =2) +y(z —x) + z(x — y) 0

. T 1 1 1
Using the multipliers 322 7 We have

X%dx—i— y%dy-i—z%dz X%dx—f— }%dy—l—z%dz 1 1 1
= == - +t-+-=c.

Each ratio = =
(y=2)+(z=x)+(x—y) 0 x y z

The required solution is ¢(xyz, L + % +1)=o.
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Example 9

Solve (4y — 3z)p + (2z — 4x)q = (3x — 2y).
Solution. The g/ven equat:on is Lagrange equation. Hence the subsidiary equation is

dx  __
o5 = 2z 4X 3Z 2 . Using the multipliers 2,3,4 we have

2dx + 3dy + 4dz _ 2dx + 3dy + 4dz
2(4y —3z) +3(2z — 4x) + 4(3x — 2y) 0
= 2dx+3dy+4dz=0 — 2x+3y+4z=0.

Each ratio =

Using the multipliers x,y,z we have

xdx + ydy + zdz _ xdx + ydy + zdz
x(4y —3z) + y(2z — 4x) + z(3x — 2y) 0
= xdx+ydy+zdz=0 = x> +y’+22=0.

Each ratio =

The required solution ¢(2x + 3y + 4z,x? + y? + z?) = 0.
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Example 10

Solve x(y* + 2)p — y(x* + 2)g = z(x* — y?).
Solution. The glven equation is Lagrange equation. Hence the subsidiary equation is
(y‘é+z) y(X2+Z) = Z(de 3y Using the multlpllers = %,% we have
dx 4 dy 4 dz % 4 dy 4 d?
Each ratio = = Z
y24+z—x2—z+22—y? 0
dx dy dz
= —+—+——0 — log x+log y+log z=log ci = xyz=c.
y
Using the multipliers x,y,—1 we have
. xdx + ydy — dz xdx + ydy — dz
Each ratio = =
224 2) —y2(x2 + 2) — 2(x2 — y2)  x2%2 + x2z2 — y2x2 — 27 — 2x2 + 7?2
d dy — d.
:%:} xdx+ydy —dz=0 = x> +y>—2z=c.
The required solution is ¢(xyz,x? + y? — 2z) = 0.
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Example 11.

Find the general solution of z(x — y) = x?p — y?q.

Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dz
2(x—y)

dx _ _dy
x2

,yZ -

. Taking the first two ratios

dx dy 1 1 1 1
=L = ——=Zdg = —=—=-=a.
x2  —y? X y y x
Adding first two ratios and comparing this with third
dx +dy dz dx + dy . dz dx+dy dz
xX2—y?  z(x—y) x+y)x—y) z(x-y) xty z
(x+vy) Xty
log(x+y)=logz+logey = log———= =logey — — = o.
z z

The required solution is ¢ (% -1 %) =0.
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Example 12.

Solve (x? — y? — z%)p + 2xyq = 2xz.
Solution. The §iven equation is Lagrange equation. Hence the subsidiary equation is
ke = o _ dz Taking the second and third ratios

(x2—y2—22) — 2xy ~ 2xz
d dz d) dz
e = Ly — log y=log z+log ¢ = X:q.
2xy  2xz y z z

Using the multipliers x,y,z we have

xdx + ydy + zdz _ xdx +ydy +zdz  xdx + ydy + zdz

Each ratio = = = ]
x3 — xy? — xz2 + 2xy? + 2xz? x3 + xy? + xz2 x(x2 + y? + z2)

Comparing this with the second ratio

dy  xdx+ ydy + zdz . dy _ 2(xdx + ydy + zdz)

29 x(2+y2 + 22) y (P24
lo = log(x? 2 2 logcy, — ;:c.
g y =log(x" +y° +2°) +log Eryia @

Hence the solution is ¢ (%, W) =0.
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Example 13.

Solve (x> — yz)p + (y?> — xz)q = 2% — xy.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx dy dz

x2—yz y2—xz Z2xy’

Using the multipliers 1,1,1 we have

dx + dy + d.
Each ratio = X+ dy + dz . (1)
x2+y2+2z2—yz—xz—xy
Using the multipliers x,y,z we have
d d d
Each ratio = X + ydy + 2dz (2)

X3+ y3+23 —3xyz’
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Solution (contd...)

Comparing (1) and (2) we have

dx + dy + dz _ xdx + ydy + zdz
X4y 42 —yz—xz—xy x3+y3+23—3xyz
dx + dy + dz . xdx + ydy + zdz
X4 y2 422 —yr—xz—xy (x+y+2z)(x2+y2+22—yz—xz—xy)
d d d
dx+dy+dz:% = Xy +yz+xz=c.
Taking the first two ratios xTyTz
dx —d dx —d dx — d
Each ratio = — x }2/ == 2X 24 = X . (3)
XR—yz—(y?—xz) xX2—y?+z(x-y) (x-y)x+ty+2z)
Taking the second and third ratios
dy — d. dy — d. dy — d.
Each ratio = Y- = Y~ = Y~ 2 (4)
2-xz—(2-xy) y*-2Z2+x(y-2) (y—2)(x+y+2)

Comparing (3) and (4) we have

dx — dy dy — dz xX—y

-ty t2) -2xty+z)  y-z

Il
9

on i x=y\ —
Hence the solution is ¢ (xy + yz + xz, yiz> =0.
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Example 14.

Solve (x® +y? + yz)p+ (x> + y? — xz)q = z(x + y).
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx _ dy _ dz
X24+y2+yz X2+y2—xz  z(x+y)

Using the multipliers 1, —1, —1 we have

dx —dy — dz _dx—dy —dz

Each ratio = =
X2+ y2 4+ yz—x2—y?2 4 xz—2zx — xy 0

— X—y—z=qC.

Using the multipliers x,y,0 we have

, xdx + ydy dz
Each ratio = =
X3+ xy2+xyz+x2y +y3 —xyz  z(x+y)
xdx + ydy dz xdx +ydy  dz X2 4+ y?
_ == — = L 0
(x+y)02+y?)  z(x+y) x2+y?  z 22

x2+y2
2

Hence the solution is ¢ (x —y—z, =

) =o.
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Example 15.

Solve (x + y)zp + (x — y)zq = x? + y2.
Solution. The given equation is Lagrange equation. Hence the subsidiary equation is

dx . dy _ dz
(x+y)z  (x—y)z  x2+y?

Using the multipliers x, —y, —z we have

xdx — ydy — zdz _ xdx — ydy — zdz

Each ratio

T X2z4 xyz — xyz + y2z — x2z — y?z 0

2 2

= xdx—ydy —zdz=0 = x> —y?>— 22 =¢.

Using the multipliers y,x, —z we have

ydx + xdx — zdz _ ydx + xdy — zdz

Each ratio = =
xyz + y2z + xz2 — xyz — xz2 — y2z 0

— ydx 4 xdx —zdz =0 = 2xy — 2° = .

Hence the solution is ¢(x? — y?,2%,2xy — z°) = 0.
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Linear partial differential equations of high order with

constant coefficients

A linear differential equation of nt" order with constant coefficients of the
form

0"z 0"z 0"z 0"z
80% + a1 Ox" 10y + a28x”*28y2 +---+ anTW+

b2y Oy, O, O
0 9xn—1 1(9Xn—2a 2(9X”_38 2 ”_18yn—1
0%z 0°z 0%z 0z

0z
a2 T 9%y oy +£26 2 T lg +€4a—+€5z—G(x,y)

tot by

where ag, a1,...,an, bg, b1,...,bn_1,%0,¥01,42,03, 04, L5 are constants.
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Homogeneous linear partial differential equations

Using the standard notation D = 8%, D = a% the above equation can be

written as

[0D" + a1 D" 1D’ + 2,D"2D" + - + 2,D"" +
bODn—l + len—2Dl + szI‘l—3[)/2 NI bn_lD/n71+
4o+ LoD? + 0,DD’ + £,D” + 13D + (4D + l5)z = G(x, y).

The homogenous equations of order n is of the form

3%4-3 o'z +a 0z + +a%+—G(X )
09xn " Loxn19y " 2 9xn20y2 Toyn Y

[0D" + a1 D" 1D + 2,D"2D" - .- + 2,D""|z = G(x, y).
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Complementary functions

To find the complementary functions for the linear homogenous partial
differential equation of order n we consider

[0D" + 21D" D' + 2,D"2D” + -+ 4+ 2,0""]z = 0. (3)
Let us assume that

z="f(y + mx)

be a solution of the above equation. Differentiating partially with respect
to x we get

Dz = mf'(y + mx)
D?z = m?*f" (y + mx)

D"z = m"f(")(y + mx).
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Complementary functions

Similarly differentiating partially with respect to y we get
D"z = f("(y + mx). And the mixed partial derivative is given by

D""D"z = m" " (" (y + mx).
Substituting these values in (3) we get

n—2 4.4 an) f(”)(y_|_ mx) = 0.

[agm" + aam™ 4+ aam
Since f is arbitrary f(")(y + mx) # 0. Hence
aom”—l—alm”_l +32mn—2 +---+ap=0. (4)

This equation is known as auxiliary equation which is an algebraic
equation of nt" degree in m hence by fundamental theorem of algebra it
has n roots.
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Complementary functions

Case (i) : If the roots are distinct (real or complex) say my, ma, ..., mp,
then the complementary function is given by

z="HA(y + mx)+ iy + mx)+ -+ fo(y + mpx).
Case (ii) : If the r roots are equal say my = mp = --- = m,, then the
complementary function is given by

z = fi(y + mix) + xb(y + mix) + x*f(y + mix) + - + x"f(y + mx)
+hrp1(y + mep1x) + - -+ oy + max).

For r = 2 we have

z = fA(y + mix) + xfa(y + mix) + 3y + m3x) + - - + fa(y + mpx).

For r = 3 we have

z = fi(y + mix) + xb(y + mix) + X2y + mix) + fa(y + max) + -+ fo(y + mpx).
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SET N

Solve (D? — 5DD’ 4+ 6D )z = 0.
Solution.

The auxillary equation is m*> —5m + 6 = 0
(m—2)(m—-3)=0
m=2,3.
z = f(y + 2x) + f(y + 3x).

Example 17.

Solve (D? — 4DD’ 4+ 4D"*)z = 0.
Solution.

The auxillary equation is m*> —4m +4 = 0
(m—2)?2=0
m=2,2.
z = fi(y + 2x) + xh(y + 2x).

v
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Example 18.

Solve (D? — 6D2D’ + 11DD" — 6D" )z = 0.
Solution.

The auxillary equation is m> — 6m® +11m — 6 = 0
(m—-1)(m—-2)(m—-3)=0
m=1,2,3.
z=fi(y +x) + oy + 2x) + fo(y + 2x).

Example 19.

Solve (D* — 16D"")z = 0.
Solution.

The auxillary equation is m* — 16 = 0
(m2 — 4)(m2 +4)=0
m= 42 +2j.
z=fi(y +2x) + h(y — 2x) + f3(y + 2ix) + fa(y — 2ix).

v
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Examples

Example 20.

Solve (D* — 2D3D’ + 2DD" — D™)z = 0.
Solution.
The auxillary equation is m* —2m® +2m —1 =0
(m? = 1)(m—1)> =0
(m+1)(m—1)* =0
m=-1,1,1,1.
z=fily —x) + h(y + x) + xf(y + x) + X fa(y + x).
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The particular Integral

Let F(D,D")z = G(x,y) be homogeneous of non-homogeneous linear
partial differential equation with constant coefficients. Then the particular
integral (P.1.) is given by

1
Pl.=——G .
F(D, D/) (X’y)
Case (i). If G(x,y) = e® T then the particular integral is given by
1 1
Pl = ax+by _ ax+by
F(D,D)° F(a,b)°

provided F(a, b) # 0.
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The particular Integral

If F(a,b) =0,(D — 2£D') or its power will be a factor for F(D,D') = 0. In
this case it can be factorized and proceed as follows:

1

P.l. = e =

(D - ZD")R(D, D)
provided Fi(a, b) # 0.

1

P.l. = e =

(D~ DR (D, D)
provided F>(a, b) # 0.

1
- (D-2D)F.(D,D)

provided F,(a, b) # 0.

P.l.

e

ax+by _

1
Fl(aa b)

ax+by

X e

ax+by

F2(3, b) 76

1 X7r ax+by
F(a,b) r!
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Example 21.

Solve (D? — 4DD’ + 3D'2)z — 23y
Solution.

The auxillay equation is m*> — 4m + 3 = 0
(m—-1)(m—-3)=0

m=1,3.
C.F = fily +x) + fo(y + 3x)
P.l = 1 e2)<+3y

D2 — 4DD’ + 3D"

— 1 e2x+3y
22 -4(2)(3) +3(3)%)

— 1 e2x+3y
4 —24 — 27

_ le2x+3y.
7

1
z=f(y+x)+ h(y+3x)+ 762X+3y.
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Example 22.

Solve (D? — D'Z)z =eX V.
Solution.

The auxillary equation is m*> —1 = 0
(m—-1)(m+1)=0
m = £1.
C.F=fi(y+x)+ hly —x).

_ 1 X—y
P.l. = me
_ 1 ex—y
(D — D')(D + D)
1 Ny

T a-(—)o+0)°
1

x e 7.

N |

1
z:fl(y+x)+1‘2(y—x)+§xex_y.
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Example 23.

Solve (D2 — 4DD' + 4D") = e2*+
Solution.
The auxillary equation is m> — 4m + 4 =0
(m—2)2?=0
m=2,2.
C.F = fi(y + 2x) + xf2(y + 2x).

1

Pl=—— ¥ty
D2 — 4DD’ + 4D"
— 1 e2x+y
(D —2D")?
2
=X ety

2
z = fi(y + 2x) + xh(y + 2x) + %e2x+y.
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Example 24.

Solve (D3 — 5D2D’ + 8DD"” — 4D"")z = e¥*+V.
Solution.

The auxillary equation is m®> — 5m? +8m — 4 =0
(m—1)(m—2)(m—2)=0
m=1,2,2.
C.F = fi(y + x) + fo(y + 2x) + xh(y + 2x).
1

P.I. = PRy
D3 —5D2D' + 8DD"* — 4D"
— 1 2x+y
(D — D')(D —2D’)?
= X—zezxﬂ’.
2

2
z = fi(y + x) + fa(y + 2x) + xfR(y + 2x) + X?ezx'*'y.
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Case (ii)

If G(x,y) = cos(ax + by) or sin(ax + by) then the particular integral is
given by

1 .
P.l.= F(D.D) cos(ax + by) (OR) sin(ax + by)
1

= R.P. or |.P.———_el(@+ty)
or F(D, D/)e y

then proceed as in the Case (i).
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Example 25.

Solve (D2 — DD’ — 2D")z = sin(3x + 4y).
Solution.

The auxiliary equation is m*—m—2=0
(m—2)(m+1)=0
m=2,—1.
C.F =iy +2x) + faly — x).
1 .
P.l. = o, sin(3x + 4y)
=/ P,;ei@xﬂn
D2 — DD’ — 2D”*
1 .
=1.P. i(3x+4y)
(3i)2 — (37)(47) — 2(4i)2
P.;e"@”“”
—9+12+432

1
I.P.g[cos(iix +4y) + i sin(3x + 4y)]

L @iy
— Sin(aXx 5
35 4

1
z=fi(y +2x) + h(y — x) + 0 sin(3x + 4y).

v
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Example 26.

Solve (D2 — 2DD’ + D"*)z = cos(x — 3y).
Solution.

The auxiliary equation is m?—2m+1=0
(m—12=0
m=1,1.
C.F =y +x) + xfa(y + x).
1
Pl =—————cos(x—3
D2 —2DD' 4 D" ( )
1
e
D2 — 2DD’ + D’

1 .
=R.P. ix=3y)
(02 —2()(=31) + (=312

1

=RP.——  x=3)
—1-6-9

R.P =)

R.P,%[cos(x _ Gy i il — &)

1
—— — 3y).
T cos(x — 3y)

1
z=fi(y + x) + xh(y + x) — 6 cos(x — 3y).

v
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Example 27.

Solve (D2 + 4DD’ — 5D")z = sin(2x + 3y).
Solution.

The auxiliary equation is m?> + 4m — 5 = 0
(m—1)(m+5)=0
m=1,-b5.
C.F = fi(y + x) + fa(y — 5x).
Py S
D2 + 4DD’ — 5D’
P. 1 ef(2x+3y)
D2 +4DD’ — 5D"

sin(2x + 3y)

— |.P. 1 i(2x+3y)
(20)2 + 4(21)(31) — 5(37)2

=/ p.;ef(%%)’)

—4 — 24 + 45

1
I.P.ﬁ[cos(2x +3y) + i sin(2x + 3y)]

L i3
17 Sin(2x +3y).

1
z = fi(y + x) + f2(y — 5x) + i sin(2x + 3y).

v
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Example 28.

Solve (2D2 — 5DD’ + 2D")z = 5sin(2x + y).
Solution.

The auxiliary equation is 2m> —5m +2 =0
2m—-1)(m—-2)=0

m=2,

N =

1
C.F.=fi(y +2x) + h(y + EX)

1
P.l. = 5 sin(2x +
202 —s5pp’ + 207" ° (2x+)
1 )
=1.P. 5e/(x+y)
(2D —D')(D —2D") "¢
1
=/ P.——5bxe

' (2'(2,') — i)
I.P.%Sx[cos(2x +y)+i sin(2x + y)]

i(2x+y)

5
—3% cos(2x + y).

1 5
z=f(y+2x)+ fh(y + Ex) - cos(2x + y).

v
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Example 29.

Solve (D® + D?D’ — pp” — D" )z = eX cos(2y).
Solution.
The auxillary equation is m®> + m?> —m—1=0
m*(m+1)—(m+1)=0
(m?* —1)(m+1)=0
m=1,-1,-1.
C.F=fly +x) + £y = x) + xf3(y — x).
PYN= ! * cos(2y) = R.P ! *ef2
1= 5o —ppr —pr € ) = RP o i —ppr b €
1 ] 1 .
= R.P x+i2y _ R.P. x+i2y
(1) + (1)2(21) — ()22 — (21)3 1+2i+4+8i
— ] 1 i ex+i2y — R.P. 1 i 1-— 2’: ex+i2y — R.P. 1-2i <=))<ei2y
5(1+ 2i) 5(1+2i)1—2i 5(1+ 4)
1-2i a
= R.P. IeX[cos(2y) + isin(2y)] = ;—5[cos(2y) + 2sin(2y)].
z=fi(y +x)+ h(y —x)+x i(y —x) + %(cos2y + 2sin 2y).

v
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Example 30.

Solve (D3 + D2D’ — DD”* — D)z = cos(2x + y).
Solution. The complementary function is fi(y — x) + x fa(y — x) + f3(y + x).

1
P.I = D r D20’ — DOP —D° cos(2x + y)
P 1 i(2x+y)
‘D3 + D2D' — DD”* — D”®
1 .
=R.P. i(2xty)
(@) + (202() — @GP — ()P
— R.P. 1 ei(2)<+y)
8 —4i L 2iti

— R.P. L ciecty)

= R.P.é[cos(2x + 3y) + i sin(2x + y)]

1
=5 sin(2x + y).

1
2= fily = x) +x By = )+ Bly +x) — 5 sin2x + y).
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Example 31.

Solve (D3 + D2D’ — DD”” — D
Solution.

’3)2 = cos(x + y).

The auxillary equation is m®> +m?> —m—1=0
m*(m+1)—(m+1)=0
(m?*—1)(m+1)=0
(m*—1)(m+1)=0
m=1,-1,—1.

C.F=fi(y+x)+ h(y —x)+x (y — x).

1 1 ,

P.l = cos(x +y) = R.P iGxty)
D3 + D2D' — DD — D (x+5) (D — D')(D? 4 2DD’ 4 D**)

i i+y) _ R p. 1 et — Rp L ity
(-1—2-1) —4

=R 2 09"
=R.P.— %x(cos(x +y)+isin(x+y)) = f% x cos(x + y).

z=fi(y +x) + f2(y — x) + xf3(y — x) —  xcos(x + y).
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Case(iii).

If G(x,y) = x"y®, then the particular integral is given by
1

Pl=——__x"vs=[FD.D'l" 1x"y®

FiD.0)* Y [FD, D" "x"y",

Now expand [F(D, D’)]~! as a binomial series and operate on x"y*.

Example 32.

Solve (D? — 2DD")z = x3y.
Solution. Complementary function is F = fi(y) + fa(y + 2x).

1 1 1 2D’ 1
[Pl = x3y: xayz— 1-— x3y
D2 —2DD’ D2 [1 _ zo/] D2 D
D
—il
1 2D’ 4D ;1 2D’ 4D" 3
"' ot YT k| T T | XY
6 X5 6
Xy K0

1 2 1 2x4 x° X
e o= o ] =

5]
z=fi(y) + fa(y + 2x) + 5 + 55-
V.
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Example 33.

Solve (D? +2DD’ + D’z)z =x2 4+ xy — y2.
Solution. The complementary function is fi(y — x) + x fa(y — x).
PI = prappre A Y =)= o (4 =)
b D2 1423 + 2]
- —il
1 20’ D” ) )
:ﬁ 1+D+§ X +xy—y
1 '1 2D D’2+4D’2+ 2 )
= |1- - e x4 xy —
D2 D D D Y7
_ 1o 22 1
= 5 _x +xy—y —B(X—Zy)+3ﬁ(—2)
1
:ﬁ[x2+xy—y2—x2+4xy—3xz]
1
= 5[5)0’—}’2 - 3%
I oo 1,
= |gXY XY X
5 1 1
z=Ff(y—x)+x fg(y—x)+gx3y—ix2y2—zx4.

v
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If G(X,y) = eax+berys or cos ax + by x"y® or sinax + by x"y° the
particular integral is given by
x-+b
P.l. = #e(ax+by)xry5 _ e(a +by) XfyS
F(D,D’) F(D + a,D’ + b)

— e(ax+by)[F(D + a, D' + b)]—lxrys_

Expand [F(D + a.D’ + b)]~! as a binomial series and operate on x"y*.

1 1 .
Pl .= ——cos@t¥) yrys - g p ___— __gilaxtby)yrys
F(D,D") cos Xy F(D,D’)e Xy
R P ei(ax+by) .
RO e D+ i)Y

= R.P.PFIF(D + ai, D' + bi)] 7 Ix"y*.

Expand [F(D + ai, D' + bi)]~! as a binomial series and operate on x"y*.



1
Pl = Wsin(ax + b_y)Xr_ys =
1 .
| P. i(ax+by) r,,s
Fo.o)" Y
| p ef(ax+by) .
~ ROt ai, D b)Y

= 1.P.e/>[F(D + ai, D' + bi)]~'x"y*.

Expand [F(D + ai, D’ + bi)] ™! as a binomial series and operate on x"y*.
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Example 34.

oz 0%z Pz _
Solvew+m—6w—ycosx.

Solution. The complementary function is fi(y + 2x) + f2(y — 3x).

1 eix
P.l = D2+ DD — 6D’2y cosx = R.P. D2+ DD — 6D’2y
_ = eiX
— 1 2D+ D2+ iD + DD —6D7”
—R.P °

Tl {iD' + 2iD + D2 + DD' — 6D7}]”

= —R.P.e*[1 — (iD' + 2iD + D* + DD' — 6D")] "y
= —R.P.e*[1 — (iD' + 2iD + D* + DD' — 6D")]y

= —R.P.eX[y +iD'(y)] = —R.P.(cos x + isin x)[y + i]

= —y CosS X + sin x

z=f(y+2x)+ f(y —3x) —y cosx +sin x.

v
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Example 35.

Solve (D? — DD’ — 2D"*)z = (y — 1)e*.
Solution. The complementary function is fi(y + 2x) + f(y — x).

1
P = oo —apr Y
1
= D7 pp 22V Ve
eX
f— - 1
D+ — (Do) 207 Y
eX
= —1
1720402 -DD-D 207 Y
eX
(y-1)

"1+ (2D+D?— D' — DD —5D7)]
= &[1+ (2D + D?*— D' — DD’ —5D")]"L(y — 1)
— e[l + (2D +D?— D' — DD’ —5D")](y — 1)
=ely-1)+D'(y 1)
=e'y—1+1]
= ye*.

z = fi(y + 2x) + oy — x) + ye*.

v
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Example 36.

Solve (D? — 5DD’ + 6D’2)z = ysin x.
Solution. The complementary function is fi(y + 2x) + f(y + 3x).

1 1 :
Pl.=——— _—ysinx=lP———M "%
D2 _5DD’ + 607 D2 _5pD’ +6D7%° 7
eix
—I.P.
(D+i2 -5 +)(D) — 607"

P eix

T 1 2id+D2—5iD' —sDD' —6D?”

—IP i

"“[1+ (5D’ — 2iD — D2 + 5DD' 1 6D7)]”
= I.P. — &X[1 + (5iD' — 2iD — D + 5DD’ + 6D )] "1y
= I.P. — &X[1 — (5iD' — 2iD — D+ 5DD’ + 6D" )]y

= 1.P. — eX[y — 5iD’(y)] = I.P. — (cos x + i sin x)[y — 5i]
= 5cosx — ysinx.

z = fi(y + 2x) + fo(y + 3x) + 5cos x — y sin x.
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Exercises

Example 37.

1. Solve (D? — DD' — 20D")z = 51 4 sin(4x — y)

Solve (D? + DD’ — 6Dz = x2y + 31V,

Solve (D3 + D2D’ — DD” — D)z = e®Y + cos(x + y).
Solve (D? — 2DD")z = x3y + .

Solve (D3 — 7DD” — 6D")z = sin(x + 2y) + >V,
Solve (D2 + 4DD’' — 5D")z = sin(x — 2y) + 3e>7Y.
Solve (D2 — 6DD’ + 5D")z = e sinh y + xy.

No g s w S
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Non-homogeneous linear partial differential equations

Consider the equation of the form

(D—mD'—a)z=0

(1)

where D = % and D' = %. Then (1) becomes p — mq = az which is a

Lagrange equation. Hence the subsidiary equation is

dx i dz

1 -m az’

By taking the first two ratios, we get
y+mx=c.

By taking the first and third ratios, we have

dx dz z
= —_— — = .
az eax
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The complete solution of equation (1) is given by

o f(y + mx) = e™f(y + mx).
Now we consider the general form of non homogeneous equation as
(D —mD" — a1)(D—myD' — a3)---(D—mp,D —a,)z=0

whose solution is given by

z = e™fi(y + mix) + e**h(y + max) + - - + > (y + mnx).
In the case of repeated-factors

(D—-mD"—a)'z=0.

The solution is given by

z=e>fi(y + mx) +x eXh(y + mx) + -+ x""Le¥,

P. Sam Johnson Linear partial differential equations of high order with constant coefficients| March 5, 2020 53/58



Example 38.

Solve (D —2D" —3)(D —3D" —2)z = 0.
Solution. The given equation is (D — 2D’ — 3)(D — 3D’ — 2)z = 0. By
comparing this equation with (D — myD" — a1)(D — mpD’' — a3)z = 0.
Here a; = 3, m; = 2 and my = 3.

z = e¥fi(y +2x) + eXf(y + 3x).

| A\

Example 39.

Solve (D> — DD' + D' — 1)z = 0.

Solution. The given equation is (D — D' + 1)(D — 1)z = 0. By comparing
this equation with (D — m1D" — a1)(D — myD’ — a3)z = 0 Here
aa=-1l,a=1m =1 and my, =0.

z=e "f(y + x) + e*h(y).

A,
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Example 40.

Solve (D2 +2DD’ + D" + 3D 43D’ + 2)z = 35y

Solution. The given equation is (D + D' +1)(D + D' +2)z =0. By
comparing this equation with (D — miD’ — a1)(D — mpD’ — a3)z = 0.
Here a1 = —1,ap = —2,m; = —1 and mp = —1.

C.F=e*fly —x)+ e *h(y — x).

1

Pl = 3x+5y
D+D+0)(D1D 12
— 1 3x+5y
(3+5+1)(3+5+2)
_ 1 3x+5y
= 906 .
1
z=e"f(y —x)+ e_2Xf2(y —x) + %e3x+5y.
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Example 41.

Solve (D2 — 2DD’ + D" — 3D + 3D’ + 2)z = (&3 + 2e~ )2,
Solution. The given equation can be written as
(D—D'—1)(D— D' —2)z = % +4e=% +4e>e~%. To find C.F. compare this equation with
(D —mD’ —a1)(D — mpyD’ — a)z=0. Here a1 = 1,a =2,m; = 1 and mp = 1.

C.F = €Ay + x) + eXh(y + x).

1

P.| = 6x 4 —4y 4 3x—2y
(D_D —1)(D_D —2)° "% "t
1 6 1 4
= ke 4%
DO-D-1)D-D-2° "D-D-1)D-D—2)°¢
1 3x—2y
to-D-no-D-2"
1 G 1 —4 1 3x—2
= e + 4™ 4 ———— 47,
(6-1)(6-2) (=(=4) - 1)(-(-4) -2) 4B -(-2)-2)
e6x e—4y e3x—2y
“20 "3 T3
eﬁx 674}/ e3xf2y
Z=exf1(y+X)+e2Xf2(y+X)+E+2 Tt
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Example 42.

Solve (D2 +2DD’ + D" — 2D — 2D')z = sin(x + 2y).

Solution. The given equation can be written as (D + D')(D + D’ — 2)z = sin(x + 2y).
To find C.F. compare this equation with (D — miD’ — a1)(D — mpD’ — ap)z = 0. Here
ay =a,ap=2,m = —1, and my = —1.

C.F.=fi(y — x) + e¥fh(y — x)

1
P.l = sin(x + 2
D2 4+ 2DD’ + D> — 2D — 2D’ ( y)
_ P 1 i (x+2y)
D2 +2DD’ + D> — 2D — 2D’
= 1.P. ! iGct)
2+ 2(i)(2i) + (2i)2 — 2(i) — 2(2i)
—I.P. ! iz _yp €)1 32
—1—4—4—2(i) — 2(2i) 3 34+2(i)3—2i
_p cos(x + 2y) + isin(x +2y) 3 — 2i
o 3 9+4

= %(2 cos(x + 2y) — 3sin(x + 2y)).

1
z = fi(yx) + e¥h(y — x) + 5(2 cos(x + 2y) — 3sin(x + 2y)).
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